Discovering Temporal Relation Rules Mining from Interval Data

نویسندگان

  • Jun Wook Lee
  • Yong Joon Lee
  • Hey Kyu Kim
  • Bu Hun Hwang
  • Keun Ho Ryu
چکیده

In this paper, we propose a new data mining technique that can address the temporal relation rules of temporal interval data by using Allen’s theory. We present two new algorithms for discovering temporal relationships: one is to preprocess an algorithm for the generalization of temporal interval data and to transform timestamp data into temporal interval data; and the other is to use a temporal relation algorithm for mining temporal relation rules and to discover the rules from temporal interval data. This technique can provide more useful knowledge in comparison with other conventional data mining techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discovering Richer Temporal Association Rules from Interval-Based Data

Temporal association rule mining promises the ability to discover time-dependent correlations or patterns between events in large volumes of data. To date, most temporal data mining research has focused on events existing at a point in time rather than over a temporal interval. In comparison to static rules, mining with respect to time points provides semantically richer rules. However, accommo...

متن کامل

ARMADA - An algorithm for discovering richer relative temporal association rules from interval-based data

Temporal association rule mining promises the ability to discover time-dependent correlations or patterns between events in large volumes of data. To date, most temporal data mining research has focused on events existing at a point in time rather than over a temporal interval. In comparison to static rules, mining with respect to time points provides semantically richer rules. However, accommo...

متن کامل

An Approach of Discovering Spatial-temporal Patterns in Geographical Process

Spatial data mining focuses on searching rules of the geographical statement, the structures of distribution and the spatial patterns of phenomena. However, many methods ignore the temporal information, thus, limited results describing the statement of spatial phenomena. This paper focuses on developing a mining method which directly detects spatial-temporal association rules hidden in the geog...

متن کامل

Temporal Rule Discovery using Genetic Programming and Specialized Hardware

Discovering association rules is a well-established problem in the field of data mining, with many existing solutions. In later years, several methods have been proposed for mining rules from sequential and temporal data. This paper presents a novel technique based on genetic programming and specialized pattern matching hardware. The advantages of this method are its flexibility and adaptabilit...

متن کامل

Evolutionary algorithms and fuzzy sets for discovering temporal rules

A novel method is presented for mining fuzzy association rules that have a temporal pattern. Our proposed method contributes towards discovering temporal patterns that could otherwise be lost from defining the membership functions before the mining process. The novelty of this research lies in exploring the composition of fuzzy and temporal association rules, and using a multi-objective evoluti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002